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V. Remarks on the probabilities of error in physical obserwtions,}

and on the density of the earth, considered, especially with
regard to the reduction of experiments on the pendulum. In a
letter to Capt. HENRY KATER, F. R. S. By THoMmAs YouNG,
M. D. For. Sec. R. S. |

Read January 21, 1819.
MY DEAR SIR,

Tuz results of some of your late experiments on the pen-
dulum having led me to reflect on the possible inequalities in
the arrangement of gravitating matter within the earth’s sub-
stance, as well as on the methods of appreciating the accuracy
of a long series of observations in general, I have thought
that it might be agreeable to you, to receive the conclusions
which I have obtained from my investigations, in such a
form as might serve either to accompany the report of your
operations, or to be laid before the Royal Society as a distinct
communication.

1. On the estimation of the advantage of multiplied ob-
servations.

It has been a favourite object of research and speculation,
among the authors of the most modern refinements of ma-

thematical analysis, to determine the laws, by which the pro-

bability of occurrences, and the accuracy of experimental re-
sults, may be reduced to a numerical form. It is indeed true,
that this calculation has sometimes vainly endeavoured to
substitute arithmetic for common sense, and at other times
has exhibited an inclination to employ the doctrine of chances
as a sort of auxiliary in the pursuit of a political object, not
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otherwise so easily attainable ; but we must recollect, that at
least as much good sense is required in applying our mathe-
- matics to objects of a moral nature, as would be suflicient to
enable us to judge of all their relations without any mathe-
matics at all: and that a wise government and a brave
people may rely with much more confidence on the perma-
nent sources of their prosperity, than the most expert calcu-
lators have any right to repose in the most ingenious combi-
nations of accidental causes.

It is however an important, as well as an interesting
study, to inquire in what manner the apparent constancy of
many general results, which are obviously subject to great
and numerous causes of diversity, may best be explained:
and we shall soon discover that the combination of a multi-
tude of independent sources of error, each liable to incessant
fluctuation, has a natural tendency, derived from their mul-
tiplicity and independence, to diminish the aggregate varia-
tion of their joint effect; and that this consideration is suffi-
cient to illustrate the occurrence, for example, of almost an
equal number of dead letters every year in a general post
office, and many other similar circumstances, which, to an
unprepared mind, seem to wear the appearance of a kind of
mysterious fatality, and which have sometimes been consi-
dered, even by those who have investigated the subject with
more attention, as implying something approaching more
nearly to constancy in the original causes of the events, than
there is any just reason for inferring from them. ‘

This statement may be rendered more intelligible by the
simple case of supposing an equal large number of black and
white balls to be thrown into a box, and 100 of them to be
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drawn out either at once or in succession. It may then be
demonstrated, as will appear hereafter, from the number of
ways in which the respective numbers of each kind of balls
may happen to be drawn, that there is 1 chance in 124 that
exactly o of each kind may be drawn, and an even chance
that there will not be more than 58 of either, though it still
remains barely possible that even 100 black balls or 100
white may be drawn in succession.

From a similar consideration of the number of combina-
tions affording a given error, it will be easy to obtain the pro-
bable error of the mean of a number of observations of any
kind ; beginning first with the simple supposition of the cer-
tainty of an error of constant magnitude, but equally likely
to fall on either side of the truth, and then deducing from this
supposition the result of the more ordinary case of the greater
probability of small errors than of larger ones. This liability
to a constant error may be represented, by supposing a counter
to have two faces, marked o and 2 ; the mean value of an
infinite number of trials will then obviously be 1, and the
constant error of each trial will be 1, whether positive or
negative.

Now in a combination of » trials with such a counter, if we
divide the sum of the results by #, the greatest possible error
of the mean thus found will be 1; and the probability of any
other given error will be expressed by the number of combi-
nation of the facesof n counters affurding that érror, divided
by the whole number of combinations; that is, by the corres-
ponding coeflicient of the binomial (1 4 1)», divided by 27,
the sum of the coefficients. The calculation therefore will
stand thus:
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n=12 n=3 nr=g4 n=~6 n=38
Coefficients 1 21 1.3 31 1 46 4 1 1 61520, 1 828 567%0...
Mumbers thrown o z 4 o0 2 4 6 o 2 4 6 8 o 2 4 6. o 2 4 6 8...
Differences fromn 2 o 2 3 1 1 3 4 2 0 2 4 6 4 2 o... 8 6 4 2 o...
Firrors of the means 1 o 1 1 § % 1z 1 £ 0o F 1 1 % % o... 1 3 ¥ % o...
Sums of errors 14041=2 ¥+I1+141=4 1+z+o +F+241=6 l+4+5+o... 1464 1441440...
Mean errors - 3=% 3= =3 Coig=5 AN 1A

Itis easy to perceive that these coefficients must express
the true numbers of the combinations, since they are formed
by adding together the two adjacent members of the pre-
ceding series; thus when 7 is g, 1 combination giving the
number o and g the number g, these two combinations, being
again respectively combined with ¢ and o of a fourth counter,
give 14 g = 4, for the combinations affording the number ¢
in the next series ; while each succeeding series must continue
to begin and end with unity, since there is only one combina-
tion that can afford either of the extremes.

In order to continue the calculation with greater conve-
nience, we must find a general expression for the middle
terms, 2, 6, 20, 70. .., neglecting the odd values of #. The
first, 2, is made up of (14 1), the second, 6,is 2 (2 4-1);
20is2 (64 4) and 7o =2 (20} 15): or 6 =12 (2. 1), 20=
2 (6.%),70=2 (20. %), whence the series may easily be
continued at pleasure, multiplying always the preceding
term by 2, Ie, e, 28, ... We have also 6 =16. § =2*. 3,

20=2°, S, and 7o0=2°. &% consequently the terms of
this series, divided by 2», will always express the mean errors
already calculated. From this value of the middle term we
may easily deduce that of the neighbouring terms by means

. . n—1 tnt%  Fn fne—1
of‘the original formulazn . — T e itiaget the
MDCCCXIX.
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n 1
31-n+l_"l+_2_. The

n
magnitude of the mean error is exhibited in the annexed

table.

first factor less than unity being always

The general expression for this series

n Mean error . . Aem1 - . i

being 2. 3.5 ... it is obvious that if we
n

2 .500000

4 .g75000  multiply it by 3. 4. ===, the product will be
6 .g12500  —, whatever the value of # may be: and
8 .273487  when that value is large, the factors of these

10 .246094, two expressions will approach so near to
12 .225586  each other that they may be considered as
14 .209478  equal; consequently the corresponding terms
16 .196381  of either, taken between any two large va-
18 185471  lues of m, will vary in the subduplicate ratio
20 .176196  of #, since their product, which may be con-
80 .144466  sidered as the square of either, varies in the
40 .125363  simple ratio of #, so that the mean error may

50 .112271 ultimately be expressed by ¢/ ;%— The va-

6o .102574  lue of p evidently approximates to that of
7o .ogsoze  the quadrant of a circle, of which the radius
80 .088g24  is unity:thusfor n == 10 it is 1.6512, and for
00 .08g868 7 ==100, 1.5788, instead of 1.5708 ; and the
100 .079586  ultimate identity of these magnitudes has
been demonstrated by EuLer and others. (See Mr. Her-
scHEL’s Treatise on Series, in Lacroix, Engl. Ed. n. 410.)
The fraction thus found, multiplied by 2#, gives the number
of combinations expressed by the middle term, in which the
error vanishes, when # is even: and the whole number of
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combinations being also 27, it is obvious that the fraction
alone must express the probability of a result totally free
from error. The neighbouring ferms on each side, for
n == 100, are .078025, .078524, and .066588, the sum of the
7 being .515860 ; and since this sum exceeds £, it is obviously
more probable that the result of 100 trials will be found in
some of these seven terms, than in any of the remaining 94,
and that the mean error will not exceed -%. When # is so
large, that the terms concerned may be considered as nearly

£2=1  may be expressed by 1 —

equal, the factors .'i‘—.,."’ R
2

6
2,1 —=-,1 -—-I—:— ..., and the terms themselves by 1, 1 —
1 --%_, 1— -'—’?- .. the negative parts forming the series

= (1,4, 9-..) of which the sum, for ¢ terms, is = (£ ¢* + £
¢* + % q) or ultimately 327‘ ¢®; consequently if we call the
middle term ¢, we must determine ¢ in such a manner as to
havee(zq-—-;}iqa)::-;-—-e,andq(1-—-—-q) ,%;'
but e has been already found, in this case, == Ve ol and ne-
glecting at first the square of q, we have g = £ ¢/ (pn) —

and ¢* = 6pn, whence = ¢ == p, and 1 — ~ q == 93%5,

hence, for a second appro‘{lmatlon, '98455 q == Zf— Z, and

2674/ ( pn) — .58; and by continuing the cperation we
obtam 9285 ¢ = — — 3, and q == .271 V/(pn) — .54; con-

sequently the probable error, being expressed by -*L, will be

p _ ro8 __ .679 1.08 . —
542 v = e — This formula, for # = 100,

becomes .0571, and for n = 10000, .006%9 —— 00011 =
.00668.
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We must not, however, lose sight, in this calculation, of
the original condition of liability to a certain constant error in
each trial. For example, we may infer from it, that if we
made 100 observations of the place of a luminary, each dif-
fering 1’ from the truth, but indifferently on either side of it,

the error of the mean result would probably not exceed
3
50
be reduced to about a second. Now although, in the methods

of observing which we employ, the error is liable to consi-
derable variations, yet it may be represented with sufficient
acCuracy, by the combination of two or more experiments in
which the simpler law prevails. For example, the combina-
tion of two counters, such as have been considered, is équiva—-
lent to the effect of a die with four faces, or a tetraedron,
marked o, 2, 2, and 4, or with errors expressed by 1, o, o,
and —a1 ; the combination of three counters is represented by
a die havmg eight faces, or an octaedron, with the errors 1,
3, 4,4, —%, —% —1 —.1; and the combination of four, by
a sohd of 16 sides, W1th theerrors 1,4 x%,6 x 0,4 x — %, —1.

These distributions evidently resemble those which are gene-
rally found to take place in the results of our experiments;
and it is of the less consequence to represent them with greater
accuracy, since the minute steps, by which the scale of error
varies, have no sensible effect on the result, especially when
the number of observations is considerable. If, for example,
instead of two trials with the tetraedron, having the errors
1, 0, 0, — 1, we made two trials with a solid of 21 faces,
having the errors distributed equally from 1,.g,.8.. to—1,
the mean error of all thz possible combinations would only

.1’== 8.6"; and that in 1000 observations it would probably
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vary from .g75 to .349 3 andin a greater number of trials the
errors would approach still nearer to equality.

Now in order to employ any of these suppositions for the
purpose of calculation, it is only necessary to compute the
corresponding mean error, and to make it equal to the actual
mean error of a great number of observations. Thus, if we
consider each observation as representing a binary combination
of counters or constant errors, in which the mean error is 1,
and adding together the differences of the several results from
the mean, and dividing by their numbers, we find the mean
error of 100 observations 1/, we must consider the original

constant error as equal to ¢/, which is to be made the unit for

o als N 67 1.08
200 primitive combinations; and 1/2(’) 2 — 2= = .0426; and

200
the probable error of the mean will be .0426 x 120 = 5.1".
For a quaternary combination, if the error, which amounts to
2, be found 1’ the unit will be $/, and for » = 400, we have

08125 x == 5.0". And if we set out with a large number

m of combinations, the mean error being ¢/ 51’;; == e, the unit
will be e 4/ (pm) =1, and the probable error of nm trials
being equal to this unit multiplied by .542 /> —2— neglecting
the very small fraction ==, we have .542 \/ ey (pm) =
542 P ‘/_1_; e = 8514, \/-; e: which, if e be 1 ,and n == 100,
gives again 5.1”. It appears therefore that the supposition,
respecting the number of combinations representing the scale
of error, scarcely makes a perceptible difference in the result,

after the exclusion of the constant error: and that we may -
safely represent the probable error of the mean result of »

observations, by the expression 85 -, ¢ being the mean of
all the actual errors.
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We might obtain a conclusion nearly similar by considering
the sum of the squares of the errors, amounting always toz 2»:
but besides the greater labour of computing the sum of the
squares of the errors of any series of observations, the method,
strictly speaking, is somewhat less accurate, since the amount
of this sum is affected in a slight degree by any error which
may remain in the mean, while the simple sum of the errors
is wholly exempted from this uncertainty. In other respects
the results here obtained do not materially differ from "those
of LEGENDRE, BEsstL, Gauss, and LApLACE : but the mode of
investigation appears to be more simple and intelligible.

It may therefore be inferred from these calculations, first,
that the original conditions of the probability of different
errors, though they materially affect the observations them-
selves, do not very greatly modify the nature of the conclu-
sions respecting the accuracy of the mean result, because their
effect is comprehended in the magnitude of the mean error
from which those conclusions are deduced: and secondly,
that the error of the mean, on account of this limitation, is
never likely to be greater than six sevenths of the mean of
all the errors, divided by the square root of the number of

- observations. But though it is perfectly true, that the pro-
bable error of the mean is always somewhat less than the
mean error divided by the square root of the number of
observations, provided that no constant causes of error have
existed ; it is still very seldom safe to rely on the total absence
of such causes; especially as our means of detecting them
must be limited by the accuracy of our observations, not
assisted, in all instances, by the tendency to equal errors on
either side of the truth : and when we are comparing a series
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of observations made with any one instrument, or even by
any one observer, we can place so little reliance on the absence
of some constant cause of error, much greater than the pro-
bable result of the accidental causes, that it would in general
be deceiving ourselves even to enter into the calculation upon
the principles here explained: and it is much to be appre-
hended, that for want of considering this necessary condition,
the results of many elegant and refined investigations, relating
to the probabilities of error, may in the end be found perfectly
nugatory.

These are cases in which some little assistance may be
derived from the doctrine of chances with respect to matters
of literature and hiétory: but even here it would be ex-
tremely easy to pervert this application in such a manner, as
to make it subservient to the purpose of clothing fallacious
reasoning in the garb of demonstrative evidence. Thus if we
were investigating the relations of two languages to each
other, with a view of determining how far they indicated a
common origin from an older language, or an occasional
intercourse between the two nations speaking them, it would
be important to inquire, upon the supposition that the possible
varieties of monosyllabic or very simple words must be
limited by the extent of the alphabet to a certain number;
and that these names were to be given promiscuously to the
same number of things, what would be the chance that 1, 2,
g or more of the names would be applied to the same things
in two independent instances.

Now we shall find, upon consideration, that for z» names
and z things, the whole number of combinations, or rather
permutations of the whole nomenclature would be m=1.2.



8o Dr. YouNG’s remarks on the reduction

g..n; and that of these the number in which no one name

N1 He=1 N2
agreed would bea,=m—a —n.——.a, —n.—. = -

a ., - . i -
e n.a, each term expressing the number of agree

;
ments in 7,7 —1, n—2 ... instances only, and being made
up of all the combinations of so many out of z things, each
occurring as many times as all the remaining ones can dis-
agree. Hence we may easily obtain the successive values of
a from each other, the first being obviously 1, as a single
name can only be given in one way to a single thing, there-
fore,
a, =1
az =211
a3 =b6—1=—3=2
a~4::z4--1-—6—-8:9
@5 == 120—1=10—20 — 45 == 44
Ag = 720=—I—15 == 40— 135 — 264 = 265
@, == §040 = 1—21— 70 — 315—024 — 1855 = 1854
ag = 40320 =~ I =28 == 112=630—2464 — 7420 = 14832 == 14833
ag': 362880 —= 1 =~ 36 = 168 — 1134 ~~ 5544 — 22260 — 66744 — 133497 — 133496
a;, = 3628800 —1— 45—240 —1890 —11088 — 55650 — 222480 — 667485 —133496c
= 1334968
From this computation it may be inferred, that, for 10
names, the probabilities will stand thus:

No coincidence .467880  One or more 632120
One only .867880  Two or more  .264240
Two only 183941  Three or more  .080300
Three only ~ .06130og  Four or more .018991
Four only 015386  Five or more 008655
Five only .00g0o56  Six or more .000599

Six only .000521  Seven or more 000078
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‘Seven only .000066  Eight or more .000012
Eight only .000012  Nine or Ten .0000003
The same results may be still more readily obtained from
the supposition that z is a very large [number; for then, the
probability of a want of coincidence for a single case being
=1, the probability for two trials will be (""") and for the

¥ e I

Whole 7, (-—;—-)":: (1-—--—) but the hyperbolical logarithm
of 1— _{_, being ultimately — — , that of (1 - )" will be —1,

consequently the probability of no coincidence will be m
==.36%78794,: and if z is increased by 1, each of these cases
of no coincidence will afford 1 of a single coincidence: if by
two, each will afford one of a double coincidence, but half of
them will be duplicates; and if by three, the same number
must be divided by 6, since all the combinations of three

would be found six times repeated. We have therefore for

No coincidence .3678794 One or more .6g21206 = % —
One only 3678794 Two or more .2642412 =

Two only 1839397 Three ormore .08030145 == % —
Three only  .061g132 Four or more .0189883 =%

Four only 0153288 Five or more .0036600 = ;;?
Five only 0040657 Six or more  .0005943 = v553
Six only .0005109 Seven or more .0000834 =135
Seven only  .0000730 Eight or more .0000105 = ;155

1t appears therefore that nothing whatever could be inferred
with respect to the relation of two languages from the coin-
cidence of the sense of any single word in both of them; and
that the odds would only be g to 1 against the agreement of
two words: but if three words appeared to be identical, it
MDCCCXIX. M
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would be more than 10 to 1 that they must be derived in both
cases from some parent language, or introduced in some other
manner ; six words would give near 1400 chances to 1, and
8 near 100,000 : so thatin these last cases the evidence would
be little short of absolute certainty.

In the Biscayan, for example, or the ancient language of
Spain, we find in the vocabulary accompanying the elegant
essay of Baron W. von Huwmsorpr, the words berria, new ;
ora, a dog; guchi, little ; oguia, bread ; otsoa, a wolf, whence
the Spanish onza ; and zazpi, or, as LACROzZE writes it, shashpz,
seven. Now in the ancient Egyptian, new is BerI; a dog,
vHoR ; little, kupcur ; bread, o1x; a wolf, vonsH ; and seven,
suasHF ; and if we consider these words as sufficiently iden-
tical to admit of our calculating upon them, the chances will
be more than a thousand to bne, that, at some very remote
period, an Egyptian colony established itself in Spain: for
none of the languages of the neighbouring nations retain any
traces of having been the medium through which these words
have been conveyed. _

On the other hand, if we adopted the opinions of a late
learned antiquary, the probability would be still incomparably
greater that Ireland was originally peopled from the same
mother country : since he has collected more than 100 words
which are certainly Egyptian, and which he considers as
bearing the same sense in Irish; but the relation, which he
has magnified into identity, appears in general to be that of a
very faint resemblance: and this is precisely an instance of a
case, in which it would be deceiving ourselves to. attempt to
reduce the matter to a calculation. i

"(he mention of a single number, which is found to be i in=.
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disputably correct, may sometimes afford a very strong
evidence of the accuracy and veracity of a historian. If the
number were indefinitely large, the probability that it could
not have been suggested by accident would amount to an
absolute certainty: but where it must maturally have been
confined within certain moderate limits, the confirmation,
though somewhat less absolute, may still be very strong.
For example, if the subject were the number of persons
collected together for transacting business, it would be a fair
presumption that it must be between 2 or g and 100, and the
chances must be about 100 to 1 that a person reporting it
truly must have some good information ; especially if it were
not an integral number of tens or dozens, which may be con-
sidered as a species of units. Now it happens that there is a
manuscript of Droporus Sicurus, which, in describing the
funerals of the Egyptians, gives 42 for the number of persons
who had to sit in judgment on the merits of the deceased:
and in a multitude of ancient rolls of papyrus, lately found in
Egypt, it may be observed, that 42 personages are delineated,
and enumerated, as the judges assisting Osiris in a similar
ceremony. It is therefore perfectly fair to conclude from
this undeniable coincidence, that we might venture to bet 100
to 1, that the manuscript in question is in general more accu-~
rate than the others which have been collated ; that Dioporus
SicuLus was a well informed and faithful historian ; that the
graphical representations and inscriptions in question do relate
‘to some kind of judgment ; and lastly, that the hieroglyphical
numbers, found in the rolls of papyrus, have been truly
interpreted.
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2. On the mean density of the earth.

It has been observed by some philosophers, that the excess
of the density of the central parts of the earth, above that of
the superficial parts, is so great as to render it probable that
the whole was once in a state of fluidity, since this is the only
condition that would enable the heaviest substances to sink
towards the centre. But before we admit this inference, we
ought to inquire, how great would be the effect of pressure
only in augmenting the mean density, as far as we can judge
of the eompressibility of the substances, which are the most
likely to. be abundant, throughout the internal parts of the
structure.

Supposing the density at the distance x from the centre
to be expressed by y, the fluxion dy will be jointly propor-
tional to the thickness of the elementary stratum, or to its
fluxion —duz, to the actual density y, and to the attraction of the:
interior parts of the sphere, which varies as fy::d‘” ; since the

increment of pressure, and consequently that of density,
depends on the combination of these three magnitudes: we
have therefore — zdy = ydx&;;i’f’ ; an equation which will
readily afford us the value of y‘in a series of the form 1--
ax® == bzt .

In order to determine the coefficients, we must first find
Azeds x4 LtaxrP4 S ba’4- .. ., and multiplying this by

XT

{1 4 ax’ + bz*<4...) dx, we obtain

— Y == — 1 — 14T’ nba: —_— ncx’® .o
= C +- x+ }a +6-bW'$+»-«-
1
+3;,;KZ +=a >

i)
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Hence, by comparing the corresponding terms, we obtain

C=—n;

a == —.1666667n— Logarithm, 9 22184,87

b= .a2g2222222n—2 8.3467875
¢ == —.00268960n—3 7.4296867

d= .000308154n—4 6.4887650

€ == —.0000340743n—5 5.5324269
f=  .00000867495n—6 4 5652514
g = —.000000889086n—7  38.5011459
[A= .000000040627n—8  2.60877
[ == —.000000004207—9 1.6232]
[% = —.0000000004,87%~1° 0.6335]

After the exact determination of the first seven coefficients,
the next three are obtained with sufficient accuracy by means
of the successive differences of the logarithms, compared
with those of the natural numbers.

It happens very conveniently, that the conditions of the
problem are such, as to afford a remarkable facility in deriving
from this series another, which is much more convergent, and
which gives us the hyperbolic logarithm of y; for since

;__dxfymdz’ andfymdx__%x_'_%axa*_ b$’+ .
if we multiply this by dx and take the fluent, we shall have
HLy = —— (;23 P A — +-—-—-b.x~ +. )

We may determine the degree of compressibility corres-

‘ponding to a given value of #, by comparing the equation

70 :y = dx fm:dz’ or == dzp, with the properties of the
modulus of elasticity M, which is the height of such a column
of the given substance, that the increment of density ¥, occa-
sioned by the additional weight of the increment z’, is always
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! U d d
to as #’ to M, or 2 = -’i, whence — 2L = £ ; conse-
y, M y M y M
. ; d d
uently in the present case we have £ = s and M =2
n M

and if we make x =1 in the value of p, we shall obtain M in
terms of the radius of the earth, considered as unity. When
¥ is invariable, and # infinite, the density being uniform, p
becomes %, and the mean density will always be expressed
by gp, since the attractive force is simply as the mean den-
sity: and if we divide gp by y, we shall have the relation of
the mean density to the superficial density. The results of
this calculation, for different values of 7, are arranged in the
table, which will be found sufficiently accurate for the pur-
poses of the investigation, though not always correct to the
last place of figures.

n ? M:;;t 3p, mean density y - ip scomp. den.
© .38338 ©  1.0000==1:1.0C00 1.000 1.000
1 .go2go 3g.gor .go87 1.1005 .855 1.065
% .2%735 1803 .8320 1.2019 .%38 1127
I 25535 1.305 .7660 1.3054 646 1.185
1 .28688 1.055 .7106 1.4071  .575 1.24
T 22058 .goy .6617% 1.5111  .510 1.80
& -20616 808 .6185 1.6168 458 1.35
I 194 286 582 142 419 1.40
L .183 631 .549 1.82 877  1.45
7 172 646 .516 1.94 346 1.49
[ .162 617 486 2.05 .320  1.52]
# 153 594 -459 2.16 298 1.55]
vz 145 575 485 2.28 28  1.57]
55 o1 5 .3 3-3 17 1.8]

The reciprocals of the mean density are inserted, on account
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of the simplicity of the progression which they exhibit, being
in the first instance precisely equal to 1 +T;7’ and varying

but slowly from this value.

Now if we suppose, with Mr. LArLACE, the mean density
of the earth to be to that of the superficial parts as 1.55 to 1,
it appears from this table, that the height of the modulus of
elasticity must be about .594; that is, more than 12 million
feet, while the modulus of the hardest and most elastic sub-
stances, that have been éxamined, amounts only to about
10 million. It follows therefore, that the gencral law, of a
compression proportionate to the pressure, is amply sufficient
to explain the greater density of the internal parts of the
earth ; and the fact demonstrates, that this law, which is true
for small pressures in all substances, and with regard to elas-
tic fluids, in all circumstances, requires some little ’m'odiﬁ'ca-
tion for solids and liquids, the resistance increasing somewhat
faster than the density: for no mineral substance is suffi-
ciently light and incompressible to afford a sphere of the
magnitude of the earth, and of so small a specific gravity,
without some such deviation from the general law. A sphere
of water would be incomparably more dense, and one of air
would exceed this in a still greater proportion: indeed, even
the moon, if she is really perforated, as has sometimes been
believed, and contains cavities of any considerable depth,
would soon have absorbed into her substance the whole of
her atmosphere, supposing that she ever had one. It may
be objected, that the resistance of solids to actual compres-
sion may possibly be considerably greater than appears in
our experiments, since we are not absolutely certain that they
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do not extend in a transverse direction, when we compress
them in a longitudinal one, as is obviously the case with some
soft elastic substances: but this objection is removed by the
experiment on the sound of ice, which affords, either accu=-
rately or very nearly, the same resistance to compression as a
portion of water confined in a strong vessel ; and this it could
not do, if the particles of ice were allowed to expand laterally
under the operation of a compressing force.

Mr. Larrace’s conclusion, respecting the precise propor-
tion of the densities, is indeed derived from another supposi-
tion respecting their variation, and would be somewhat modi-
fied by the adoption of this theory ; it would not, however,
be so materially altered, as by any means to invalidate the
general inference. It would therefore be proper to revise
the calculations derived from the lunar motions and the ellip-
ticity of the earth, and to employ in them a variation of den-
sity somewhat resembling that which is here investigated.
Indeed without reference to the effects of compressibility, it is
obviously probable that the density of the earth should vary
more considerably in a given depth towards the surface than
near the centre, although the calculation, upon Mr. La-
PLACE’s more simple hypothesis, of a uniform variation, is
much less intricate. It would however be justifiable, as a
first approximation, to reject those terms of the series which
would vanish if » and x were very small, and to make y = 1
+ ax*; and indeed this formula has in one respect an ad-
vantage over the series, as it seems to approach more nearly
to the law of nature, in expressing a resistance somewhat
greater towards the centre, where the density is most aug-
mented: we have then, if the superficial density be to f%e
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’;‘faa, whence a :-_-\-—55-:'-6- ; and if ¢ =
1.55, a = — .58, affording an expression which is, in all pro-
bability, accurate enough for every astronomical purpose.

If the variation of density were supposed to proceed equably
with the variation of quantity, it would obviously be as the
square of the distance from the centre, and the density would
be as 1 — az?, the mean density being found at the surface of
a sphere containing half as much as the whole earth; and
this might be considered as the most natural hypothesis, if we
disregarded the effects of compression: but the arithmetical
progression of densities, from the centre to the surface, seems
in every way improbable. ‘

mean as 1 to q, ¢ =

8. On the irregularities of the earth’s surface.

A. If we suppose the plumb line to deviate from its general
direction on account of the attraction of a circumscribed mass,
situated- at a moderate depth below the earth’s surface, the
distance of the two points of greatest deviation from each
other will be to the depth of the attracting point as 2 to v/ 2.

Let the magnitude of the additional mass be to that of the
earth as a to 1, and let its distance from '
the centre be b; then supposing the
earth a sphere, and its radius unity, and
calling the angular distance of any point
from the semidiameter passing through
the mass z, the linear distance from the
mass will be / ( "2 + (¢ — b)*) =
V (2 4 ¢'z — 2bgx 4= b)) = / {1 4
b* — 2bgz); consequently the disturbing attraction will be
mﬁm: but the sine of the angle subtended by the two

MDCGCXIX. N
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centres of attraction will be to their distance b as {x to the
oblique distance /' (1 - b*— 2bgx); it will therefore be ex-

pressed by — (I_I_bf “’" ) and the sine of the very small

angular deviation of the joint force from the radius will be to
the line measuring the disturbing force as this last sine to the
radius, the difference of the third side of the triangle from
‘the radius being inconsiderable ; consequently the deviation
will be every where expressed by ar bb”%-—d. Now
in order to find where this is greatest, we must make its

. . - cxdx _ i {x2b{xda
fluxion vanish, and o = GIR T e e

¢ (14 b — 2bcx) = gbl*x, gbg’x — 2bg’r 4 (1 4 b°) cx = gb,
gcx+-'—l"5-b-13 cxr==g,and g:x.-_q/(g—}-[ +bb] )«-—-"H'b but,

making b= 1 — ¢, 212 becomes 1= 2H T oy
9

and ¢ being very small, ¢z will be¢(4+ i ).*.1---2-%-:
cc cc ce

2+ = -—-2-17—-*1——-—;-17—, whence {z =/ (1 —[1—

_.‘i”_.]z):‘/ (1-—«1 N . — )=m or simply /Zc¢, and

4b
c ==/ elx.

B. The sine of the greatest deviation of the plumb line will
amount to d==.384 -—65’;, a being the disturbing mass, and ¢

its depth.
Since ¢z == 1— -, 2bz = 2b—-"-, and 1 - bb — 2b

e (e DYk L = e =3 ¢*; and abfz becomes
2 i 2 2 2

_______abc J— abe . 2ab avb .
WOk whence d = - e == .885 ——, or simply
8

885 ——3 also a ==2.618¢°d, and ¢ = / (.885 %) If the
density were doubled throughout the extent of a sphere
touching the surface internally, the radius being ¢, we should
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have a == ¢® and d==.885¢, and ¢ == 2.64: but this is a much
greater increase of density than is likely to exist on a large
scale: so that ¢ must probably in all cases be considerably
greater than this.

C. The greatest elevation of the general surface above the
sphere will be -i-, on the supposition that the mutual attrac-

tion of the elevated parts may safely be neglected.
The fluxion of the elevation is as the fluxion of the arc
and as the deviation d conjointly ; it will therefore be ex-

abledz
GTB T Now the fluxion of ———. it +bb__zb9x)

I 2blzdx
z m, consequently the fluent of the elevation

will be ———pr T e s w) : and whxle ¢ varies from 1 to =1, this

fluent will vary from —; to —;

pressed by a

i8 —

+ b, the difference being a ( ~

.......l..) :—._.a(-:- "";"_l'.'"c) =a(2:-f-——) or simply <, since ¢ is
an extremely small fraction. This quantity comprehends
indeed the depression on the remoter side of the sphere,
which would be required to supply matter for the elevation;
but it is obvious that such a depressxon must be wholly
inconsiderable..

D. The diminution of gravity to the centre at the highest

kpoint is -zz‘i-, while the increase from the attraction of the

disturbing mass is nearly —=—, which is greater in the propor-
tion that half the radius bears to ¢."

E. The increase of gravity, at 'the. point of greatest devia-
tion, is to the deviation itself, or its sine d, as v/ to 1.

For the deviation is the measure of the horizontal attrac-
tion of the disturbing mass, which is to its vertical attraction
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as fr toc,oras ¢y £ to1. Thus if d were 5", or the

—
200265’

7977 == .~ and the acceleration

206265 29170

horjzohtal force would be

of a pendulum -5-52-;5- or 1.5"” of time in a day. It is true that
a pdrt of the deviation might depend on a defect of density as
well as on an excess; but this defect could not amount to
any great proportion of the whole, while the excess above
the general density might easily be much more considerable,
so that the acceleration of the pendulum could scarcely be

“less than a second in a day, if the greatest deviation of the
plumb line were 5"; and if the deviation were 5" at any other
place, there would be a greater acceleration than a second at
a point more or less remote from it.

F. If there were an excess of density on one side, and a
deficiency on the other, so as to constitute virtually two
centres of attraction and repulsion, and supposing their dis-
tances to be equal, and such as to produce the greatest devia-
tion, if the excess of density were twice as great as the
deficiency, a deviation of 5" would correspond to an accelera-
tion of half a second; if g times as great, to 2; if 4 times,
‘to % and if five, to a second.

It may perhaps be considered as an omission in this calcu-
lation, that the attraction of the parts of the earth’s surface,
elevated by means of the irregular gravitation, has not been
included in it. But it depends on the supposition that we
may adopt respecting the cause and date of the irregularity,
whether or no we ought to consider it as likely to have occa-
sioned such a general elevation ; and it does not appear that
the result of the computation would very materially alter our
conclusions, though it would be somewhat laborious to go
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through all its steps with precision. It would indeed be so
much the more superfluous to insist on this minute accuracy,
as variations so much more considerable in the form of the
earth’s surface are commonly neglected : for example, in the
allowance made for the reduction of different heights to the
level of the sea, which has usually been done without any
consideration of the attraction of the elevated parts, interposed
between the general surface and the place of observation. It
is however obvious, that if we were raised on a sphere of
earth a mile in diameter, its attraction would be about .

8000
of that of the whole globe, and instead of a reduction of X _

2000
in the force of gravity, we should obtain only 5455, or three
fourths as much : nor is it at all probable that the attraction
of any hill a mile in height would be so little as this, even
supposing its density to be only two thirds of the mean density,
of the earth: that of a hemispherical hill would be more than
half as much more, or in the proportion of 1.586 to 1; and it
may easily be shown, that the attraction of a large tract of table
land considered as an extensive flat surface, a mile in thickness,
would be three times as great as that of a sphere a mile in
diameter: or about twice as great as that of such a sphere of
the mean density of the earth: so that, for a place so situated,
the allowance for elevation would be reduced to one half:
and in almost any country that could be chosen for the expe-
riment, it niust remain less than three fourths of the whole
correction, deduced immediately from the duplicate proportion
of the distances from the earth’s centre. Supposing the mean
density of the earth 5.5, and that of the surface 2.5 only, the
correction, for a tract of table land, will be reduced to 1 3.
25 29

== —2., Or —2- of the whole.
55 44
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4. EvLER’s formula for the rolling pendulum.

I beg leave to observe, in conclusion, with regard to Mr.
LapLace’s theorem for the length of the convertible pendulum
rolling on equal cylinders, that its perfect accuracy may
readily be inferred, without any limitation of the form of the
pendulum, or of the magnitude of the cylinders, from the
general and elegant investigation of EuLrer, which also
affords us the proper correction for the arc of vibration. This
admirable mathematician has demonstrated, inthe sixth volume
of the Nova Acta Petropolitana, for 1488, p. 145, that if we
put % for the radius of gyration with respect to the centre of
gravity, a for the distance of the centre of gravity from the
centre of the cylinder, ¢ for the radius of the cylinder, »* for
B+ (a—c)?, and b for the sine of half of any very small arc

of semivibration, we shall have, for the time of a complete
b + wbb (bb+44ac)
? ¥/ (2a8) 4by/(2ag)’

xh . . N
o) only, which, for a simple pend;llum, of the length a,
a

k and ¢ both vanishing, becomes 5—(—55, and for any other
wa/l

wy/l _ wh
v(28) V(zg) v (zag)

Vi= -;/’i;, and al == hh = k' -4~ a*— 2ac 4 c*. Now if we
find another value of a, which will fulfil the conditions of the
equation, all the other quantities concerned remaining unal-
tered, and add the two values together, we shall have the
distance of the centres of the two cylinders correspond-
ing to the length 7 of the equivalent pendulum; but since
@=(lt2c)a=—F—, wehavea—3l —c=+v ...,
and a =L/4-c+4/..., so that the sum of the two values of

oscillation and ultimately, if b= o,

length/, ; consequently, making , we have
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a must be / 4 2c, that is, the distance of the centres of the
cylinders must exceed the length / by. twice the radius, and /
must be precisely equal to the distance of their surfaces.

Believe me, dear Sir,

very sincerely your’s,

THOMAS YOUNG.

Welheck Street, 29 Dec. 1818,
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5. Corrections for Refraction.

1. A simple and convenient method of calculating the precise magnitude of the atmospherical refraction,
in the neighbourhood of the horizon, has generally been considered as almost unattainable; and Dr.
BrinkLEY has even been disposed to assert the ¢ impossibility of investigating an exact formula,” not-
withstanding the ¢ striking specimens of mathematical ‘skill, which,” as he justly observes, ¢ have been
exhibited in the inquiry.” We shall find, however, that the principal difficulties may be evaded, 1f not
overcome, by some very easy expedients.

2. The distance from the centre of the earth being represented by @, and the weight of the superincumbent
column by y, the actual density may be called #, and the element of y will vary as the element of x and as
the density conjointly ; consequently dy = — madz; the constant quantity m being the reciprocal of the
modulus of elasticity. 'The refractive density may be called 1 +p=, p being a very small fraction ; and it is
easy to see that the perpendicular , falling on the direction of the light, will always vary inversely as the
refractive density, since that perpendicular continually represents the'sines of the consecutive angles, belong-
ing to each of the concentric surfaces, at which the refraction may be supposed to take place. (Nat. Phil, II.
b _: ol being a constant quantity. The angular refraction at each point will obviously
be directly as the elementary change of this perpendicular, and inversely as the distance v from the point of

p.81:) andu=

. . . du .
incidence; whence the fluxion of the refraction will be - = dr, as is already well known.

3. For the fluent of this expression, which cannot be directly integrated, we may obtain a converging

series by means of the TavLor1an theorem; but we must make the fluxion of the refraction constant, and
du d*v 7?2 - d3u r3
that of the density variable; so that the equation will be % = T taer T T z.3

the initial value of #, when 7 = o. Now the whole variation, of which u is capable, while z decreases from

+ ..., U being

s du
1 to o, extends from T toss o since p is very small, from s— ps to s; and dr being = - ve have

+2
d 2 ’ dze=ud d d
the equationps:vr-}-al;_- r_z + ..¢ Butwv = y/ (a%=—u?), d'():‘z = u,andagz-% .d—-f_u;

and dz being = -%, and du = — psdz, (‘jlii = F:s"% X d%.

4. We must now determine the value of the density x, which, when the temperature is uniform, becomes sim
ply = y; but for which we must find some other function of y, including the variation of temperature ; and we
may adopt, for this purpose, the hypothesis lately advanced by Professor LEsL1E, in the article Climate of the
Encyclopzdia Britannica, and suppose the density to be augmented, by the effect of cold, in the proportion of

1
1to14n (—;— z) » n being somewhat less than -1, ; and since the density is as the pressure and the com-

parative specific gravity conjointly, we have x = y ( 1+n [—' — 2] )’ 'z‘ =1+ l — g, d— = (;—'z —_—
zdy ndz dy ¥ nyy dz v oy n
= — —— — ndz, and —-_— .._.... = — __yl_ .nl-l
7y pow 2 pp P’ + = + consequently mpox ( + =+ = )
dv z nxyy - on
and =2 = 2 4 I% + =204 We may proceed to take the next fluxion with re-

dr — mpsxz = mpszz ' mpsz*
spect to y, z, and v, the variations of % and x being comparatively inconsiderable: so that if we call

(-i-'-’-X+Y+Z—-s, its fluxion w1llbeX(dy Zdz) Y ﬂ——Zdz) 7(3.(12'__.4_'(1}_)

dr—_' zdr ydr zdr ydr zdr
dy —v__2nvy _ z2nvy dz — 7 v 20y 2ny
£ — = — —— —_— = —— 2
but sinc ydr — psz Ppsz¥ | psz and zdr — psz’ we have T ( psz psB T psx )+ Y
(__ 2mvy _ 2n0y) Z 2V 4my  4noy\ o vx Yy “ apyr? 2ny* - 2n®?  an?y3
pszd psz ) bsx psz3 psx )"' mprs =3 & & ms s



2

«ozpy®”  4Anty* 4n’y? J—2n—12nn
— - or, initially = ~——— ([ e 2} e 2 1% = 201? 2o g 1?) e
> = ol B y= P a2 (1—2n—2n* = 20* — g 4n*) = i

next place, calling this fluxion H (K—L-——M—N——P._Q) we obtain, for the fourth, H (K—L —-M—N

dy 3dz zdy__ 3dz) HM (}_{I{ _ sdz 3dy 3da
(yc* ;,a;) —HL (y“d; 2dr ydr ;;a‘;\—“N (3?—;“3“)

v. In the

-P—Q) 75 vdr
...HP(.@!._ 7dz}_HQ(Ei>'__.,iiz) H(K—L-M— N-P_.Q)(mps

ydr zdr ydr zdr
v [ 1 n n :

L e e e LS
~HNZ (O Sy gp v (_i _ﬂz_._.i”!_) —HQ L[l 4w __ 4

' ps \ = 23 z [)s 2 23 %
( y* 2ny3 2n2yt 2nty* _ 4n*y3 __ 4ntyd ny? 2nty* 2ndyS.  2n3ys 4n3y4
mipisd \zs = =z 20 PO = Tm T T s T T
4n3yt ny? 2%yt 2ndys 2n%ys 4.n3y4'_ 4n3y* x L 2ny* 2n*y3

=7 + T x| & P 29 - mpts \ =5 &8 a5
2n2y3 4n*y* 4y vr [2y zny*  2ny* 2ny* 8n’y? 8n2y? 4n*y3

2 2 & | mpis E Pralar i e @ e T
1203y% 120354 120%y* 1208yt 20m7y? 16n3y3 16m3y?  12n%y*  16m3y% | 16m3y3

pr + 20 + 26 oh 8 + 210 + =8 a6 + T8 + ) I

22

X 24

will be unnecessary to continue the whole series any further; but it will be satisfactory to ‘obtain
that part of the sixth term, which is independent of v; and for this purpose we must take the
fluxion of the first part with respect to y and 2, and then with respect to v; and that of the second

twice with respect to » only; and it will be sufficient in this case to employ the initial values of g:y s
. ’ r

?5’ and fr, which are =23 (;j 47) R ;—-——:, and l;jz:;sﬁ —s; and calling 14 4n = k, the part required will be

( ——-m‘;‘*s‘l- (—2k +5 4-6kn —10n +8kn* —14n* 4 8kn* —10n* + 12kn* —36n* + 12kn* —28n> —3kn 51
+8kn® —10n* 4 10kn3 — 1413 +10kn3 —10n3 4 16kn3 — 36n3 +16kn3-—28n3 — 3kn 71+ 8ln® — 14n?
—'—’;3—5‘; [—k+3 +4kn —6n -+6kn*
— 2 2 2 2 2 27 I+2n___ ) 1+42n 2 1

1002 + 6kn®—6n® + 8kn*— 281 4~ 8kn 20n ]) ( p_— s 2 ps — ——-—-—-mpss;

~— 21 4812 4 81 -—-‘4.}1" + 1203 4 120% 4 1207 + 120° — 2007 +160% 1683 =~ 120* 1613 + 1613) =

+10kn3 — 1812 + 10kN3 — l4.nk3 4 16kn3 — 4413 4 16kn® — 36n3)—

(2= 21 w20

____I____ —_ 2 3 4 __..___I._..... — by — 2 3 )(I+2’1_ [142n
(mzp‘*s“f (3 == 61 —561® 412803 4 416n%) g [2—6n—zon*+11213] ps s) 42 {—nps
2 1 ’ e
— s) Pyl (z-6n—zon2+1;2n3)+ ies
6. The whole equation becomes therefore ultimately ps = wr + ( Itar s ) 2 I_':_i'_l:lﬂ” ord
2mps 2 6mp>s>
(1-—-16n’-—'z4n3 __I—zn—12nn 2—6n—20n% 411213 o ]T"-l- 4y ( [3-—6n-56n’+ 12873 4 416n*
24m?pis? 24mp*s 24mpis’ ) 720m*pst
2embn—zon%+ 112037 (1427 ) 142n )" 2——6n—20n%+ 11273 s
720mp3s® ] ( mps o B ( mps s 720mp3s3 + ) AL WF also
obtain, for finding, on this hypothesis, the height «, corresponding to the pressure y and the density =, the
. _ y n 227 + gy (1—=) | Rz o .
expression mx — m = 1 - + -;— hl m“_z) ; y being = Pt wonty and g*=1+4x%. But

the utility of the T'ayrLor1an theorem, thus applied, in obtaining a series, is not confined to Professor

- Lesvie’s hypothesis : it is equally welladapted to that of LarLack, or to any other admissible supposition
respecting the distribution of temperatures: and we may therefore employ it in examining the comparative
accuracy of the results of these different hypotheses.
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7. Now if we take for n the value -g—éa = .09, corresponding to the multiplier 45, employed by Mr. Lxs-
L1E, the refractions in the immediate neighbourhood of the horizon will become too great by about 1'; a
difference by far too considerable to be attributed to the errors of observation only; and we must infer, that
the law of temperature, obtained from the height of the line of congelation, is not correctly true, if applied
to elevations remote from the earth’s suface. Professor BesseL’s approximation is also found to make the
horizontal refraction too great. Mr. Larrace’s formula, which affords a very correct determination of the
refraction, is said to agree sufficiently well with direct observation also ; but in fact this formula gives a de-
pression considerably greater than was ohserved by Gay Lussac, in the only case which is adduced in its
support ; and the progressive depression follows a law which appears to be opposite to that of nature, the
temperature varying less rapidly at greater than at smaller heights, while the observations of HumsorLpT
and others seem to prove that in nature they vary more rapidly. Notwithstanding, therefore, the ingenuiiy,
and even utility of Mr, Larracg’s formula, it can only be considered as an optical hypothesis, and we are
equally at liberty to employ any other hypothesis which represents the results with equal accuracy ; or even
to correct our formulas by comparison with astronomical observations only, without assigning the precise
law of temperature implied by them, The theory will however afford us some general indications for this

I 1
zmps 2 %
whatever positive value we may attribute to 7 ; and if we adjust the second and fourth coefficients, so as to re-
present the refractions near the zenith and at the horizon, without regardmg the value of the subsequent terms,
we shall obtain the third, by dividing the fourth by half of the second; since that part of the fourth ccefficient,
which occurs in the case of horizontal refraction, is always derived from the third by taking the fluxion with

purpose ; showing, for example, that the coefficient of the second term cannot be smaller than

respect to v only, and is therefore found by multiplying the third by d'v e whatever the relations of the

other quantities concerned may be.

- . v
8. On cvery supposition, the coefficient of the first term must be T and that of the second must not
greatly differ from -—z—~ — -%- . The third cocfficient, on the hypothesis of a law analogous to Mr. Lestie’s,

will be 1500 l ; if we suppose the temperature to vary more uniformly, and make z =y (1 +£x—1), the
number will become 1900 ; or, taking z = y', 2200, m being 766, and ¢ 176: and Mr. Larrace’s formula
will of course give a value still larger In fact the result ot observatlon is represented with sufficient accu-
the

barometer standing at 30 inches, and the thermometer at 50°: and thls formula appears to be at least as
accurate as the French tables. We have, for example :

racy by the equation .0002825 =v — + (2.5+ 5?1’) + 3400'0 — + 3400 (1. 254 . 25 ¥*

4’

Altitude Refr. Conn. d. T. -+ Altitude Refr. Conn, d. T.
o ] . ¢ " ! " o ! i i ! !
o o 33 52 33 52 20 o 2039 2 40
5 © 9 57 9 56 30 o o4 141
10 © 5 21 5 21 45 0 58,45 58.3

The difference is somewhat greater a few degrees above the horizon ; thus at 20 17’ 507 this formula makes
the refraction 17’ 16", the French tables 17' 4", BrabrLuy’s 17’ 30", and Dr. BrinkeeY’s observations
reduced, 17’ 9": but in such cases we can scarcely expect a greater degree of accuracy.

9. The terrestrial refraction may be most easily determined by an immediate comparison with the angle

. o qeoudx udx oL
subtended at the earth’s centre, the fluxion of which is el and o initially the first part of the coef-

ficient of the second term of the series already obtained, and isequal to 6 ; so that this angle, while it remains
small, is six times the refraction: commonly, however, the refraction in the neighbourhood of the earth’s
surface is somewhat less than in this proportion. '

10. The effects of barometrical and thermometrical changes may be deduced from the fluxion of the equa-
tion, if we make 7, #, and 7, or rather ¢, vary : and for this purpose it will be convenient to employ the form -
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ps=vr+ (mit_)—ﬁ:‘ -+ %) 7%, the value of the fraction, if we neglect the subseQuent terms, becoming

3-41; and this expression is sufficiently accurate for calculating the whole refraction, except for altitudes of

f; . N i =yl _’_f____ii) 7 whi —yL
a few degrees. Now the fluxion of p = v ~ + (z(m-——t)p rl vt which we may call p = v . +
X ss\rr . v 1 ssyzr) . rr [dm—d¢ dp) . .
('w P )g,xgdp: (—S-+ (1—0-__2_) ;) — e\ + 7 the coefficient of dr being

2p v rv\ dr rr\ dp rr dm—dt) 1 .
o AP —_ ]2 = AN B/ TN il I A1, and m — ¢,
equal to . S and (zp s) - __(p-[- ssw) 5 + ( |} o PIng 3.41, and m t, on

. . . d .
this supposition, 519. The proportional variation of p, or _Pz’ will be z15 for every degree that the ther»

766
519 X 500
can only be determined from conjecture; but supposing the alteration of temperature to cease at the height
of about 4 miles, it must increase, with every degree that the thermometer rises at the earth’s surface, about

247 '

519 X 120

. dm _ . dm
mometer varies from 50°; and — being also 15, — will be
m —

3 = .003. The variation of ¢

.004. The alterations of the barometer will affect p

di dt .
The» and — being 145, — will be

dp

only, 3 being 5 for every inch above or below 30, It is evident, since m = 3958 X 5280 X 12

13.57 hd
the height of the barometer, and d the bulk of air compared to that of water, that m must diminish, as well
as p, when the temperature increases; and the correction for £ bein g subtractive, the three variations will co-
operate in their effects ; but the proportion will be somewhat different from that of the simple densities. If
we preferred the expression derived from Professor LEsL18’s hypothesis, we should merely have to substitute
2dn
14 21
It must however be limited to such changes as affect the lower regions of the atmosphere only, its < argua
ment’’ being the deviation from the mean temperature of the latitude ; but even in this form it cannot be sa-
tisfactorily applied to the observations at present existing; although it appears to be amply sufficient to ex-
plain the irregularities of terrestrial refraction, as well as the uncommon increase of horizontal refraction
in very cold countries : and we may even derive from all these considerations a correction of at least half a
second, or perhaps of a whole second, for the sun’s altitude at the winter solstice, tending to remove
the discordance, which has so often been found, in the results of some of the most accurate observations
of the obliquity of the ecliptic.

, b being

d¢ . .
for — and the variation depending on the law of temperature would become about % as great.

T. Y.



